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Music Tree Notation for End-to-End Optical Music
Recognition

Pau Torras Coloma

Abstract

The field of Optical Music Recognition (OMR) has seen a surge in performance thanks to the most recent advances in computer
vision and deep learning as a whole. However, the application of these advances towards real-case scenarios for domains other than
typeset music scores is rather complicated, due to limited availability of usable musical data. In this work we propose to tackle
OMR as a single-step process from image to notation reconstruction, with the key objective to avoid intermediate targets and using
existing transcriptions as output, provided that the image contents and the transcriptions can be aligned. We propose a notation
format based on a tree-like scheme that can be inferred using sequence-to-sequence models, which has already demonstrated
promising results in similar image transcription tasks. This tree-like nature could be further exploited by increasing the level of
abstraction in the sequence from left to right, inducing the model to focus on actual primitives on the score first and then organising
these primitives into higher-order compounds. Finally, we also contribute a simple tough-to-beat baseline on the proposed notation
format using Sequence-to-Sequence and Transformer models with self-supervised pre-training.
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I. INTRODUCTION

“Music is the arithmetic of sounds as optics is the geometry of light.”
Claude Debussy

WRITTEN music has been part of the cultural heritage of humankind for many centuries. From neumes as old as a
thousand of years to current-time western notation scores, people have built methods to make the most ephemeral of

arts persistent through the passing of time. Rivers of ink have been imprinted on libraries worth of paper in order to preserve
music, and much of it has indeed survived until today.

It is therefore unsurprising that, given the sheer volume of notably interesting (and oftentimes, forgotten) works of art that
have been endowed to our current generations, scholars have turned their attention to computers to aid them in the endeavour
of preserving and analysing them. The aspect that concerns us in this work is Optical Music Recognition (OMR), which is
the principal task for the computational analysis of written scores; converting images or scans of music into a defined format
a computer can process.

While OMR has been studied for more than 4 decades, it still remains a very challenging task. Music notation is bidimensional
by nature, with many symbols altering their meaning depending on both local and global context modifiers. The position of
symbols in the score also modifies their underlying semantics, the prime example being notes. Furthermore, the syntax of
Western Music Notation is very permissive, with many scores being possibly correct but hardly acceptable due to readability
or ease of interpretation. Finally, and most critically, there is a severe lack of finely annotated datasets for many recognition
contexts, which complicates the application of any pattern recognition method that requires learning.

As an application of Computer Vision, OMR has been subjected to most of the same breakthroughs as its parent field during
the last decade. Deep Learning methods have shown to be a very powerful tool, thanks to which the state of the art for music
recognition has improved substantially. Nevertheless, the incorporation of these methods in the OMR toolset has also brought
a considerable divide within the community as a result of the many new perspectives from which to tackle the problem.
Many promising approaches exist for specific scenarios, but there is no single method of addressing music recognition that
accomodates all use cases. As a result of this, no such thing as a single commonly accepted framework of evaluation of OMR
systems exists.

In this work we want to tackle some of OMR’s shortcomings by proposing a new way of recognising scores, in which
we can sidestep most of the current limitations in the field while using as many available resources as possible. We propose
doing so by exploiting current sequence-based end-to-end models, but using a more expressive tree-like representation, with
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which we skip the problem of notation reconstruction, we provide intrinsic induction biases to music semantics thanks to the
increasing abstraction level, which is reminiscent of the idea of summarisation in NLP, and we enable the use of common
music engraving formats as ground truth.

We now present the key insights of our proposal:
• Address OMR end-to-end; no intermediate representations.

We need to produce a recognition model that is able to produce a fully fledged reconstruction of the score directly. This is
because:
(a) There are many more scores available for engraving purposes than there are for Deep Learning-specific tasks – e.g. object

detection. The latter are also usually costlier to produce.
(b) By having a model learn an output format directly we avoid having to use heuristics, grammars or a second model for

notation reconstruction, reducing the scope of mistakes that come as a result of it.
In particular, we want to be able to generate scores in common and established, as their ubiquity can be exploited to collect

training data at little to no cost. The best candidates are the Music Encoding Initiative (MEI) format and MusicXML, which
are XML-based formats designed to contain engrave-ready scores. Since the latter is used in some of the biggest free access
repositories of music while also being supported in many engraving programs, we believe it is the safest starting point.

• The format has to be expressive enough for most scores, yet simple enough for models to grasp it.
Scores are probably best represented as a graph where symbols or primitives are nodes and edges represent semantic relationships
between them. Nevertheless, there are practical concerns in their application for OMR, as the literature on image-to-graph models
is, to the best of our knowledge, quite immature yet. On the other hand, image-to-sequence approaches are thriving not only
on OMR but also in related fields such as Optical Character Recognition (OCR). Therefore, we propose the output to be a
middle ground between both in order to exploit their strengths at the same time. This middle ground is representing music as
a Tree. The rationale is the following:
(a) We can exploit mature image-to-sequence models already available in the literature because trees can be represented as

a 1D sequence – to portray a simple example, one can express a tree in lisp-like form by adding parentheses delimiting
levels.

(b) Relationships between musical objects can be modelled using two dimensions: sequence order within the same level for
ordinal links and parent-child connections for abstraction (n primitives form an instance of a higher order object).

(c) Existing music engraving formats such as MusicXML are tree-based by nature, which helps ease the conversion step.
(d) The fact that at lower levels in the tree there are concrete visual elements and higher up lie the more abstract constructs

might also be helpful for recognition, as well as being something that can be exploited in recognition architectures.
• This method can be used for any use case scenario for which a transcript is available.

An end goal for us is to be able to study historical or handwritten sources without being as heavily bound by data availability.
This simplifies the problem of producing training data for these rarer use cases to an alignment one. The latter offers the
advantage that it requires a much lower level of recognition detail than fully-fledged OMR would otherwise, with the possibility
of using human knowledge heuristics for decent results.

Moreover, since methods of many different natures can target this notation format, it can also act as a lingua franca among
OMR researchers to develop a much needed common evaluation framework. Other upsides of interpreting the output as either
a sequence or a tree are that evaluation metrics that apply to both approaches are usable.

• Since raw data is abundant, self-supervision methods are possible.
One final remark is that many image-to-sequence tasks can benefit from pre-training in unsupervised scenarios [1]. Therefore,
even if there is a limited supply of labelled data, there are chances of providing robust solutions to some of the more niche
OMR use cases. Moreover, these pre-training methods can be a boost of performance in any other context.

With the ideas seen above, in this work we develop a tree-based notation format for end-to-end recognition of scores
using Deep Learning Models. The format, which we have named (rather unimaginatively) Music Tree Notation (MTN), uses
MusicXML files as origin. We create a dataset based on this notation and we test its suitability for recognition using two
image-to-sequence architectures: the Attention-based Sequence-to-Sequence (Seq2Seq) model, which is strongly established in
the OMR community, and the Transformer, a very promising architecture which is still very much untested in the field. We
also attempt self-supervision in order to see its effect on Transformer-based models’ performance.

This document is structured as follows. In Section II the field of OMR, its current trends and the current leading models
and datasets are presented. In Section III a detailed explanation of MTN and the pipeline to produce the dataset is offered.
Section IV is a detailed introduction to the models that are to be used to test the approach. Section V shows the rationale and
design of experiments in order to assess the quality of MTN, whereas Section VI shows the results for each experiment. An
assessment on the degree of accomplishment and the quality of the overall results is provided in Section VII, along with some
closing words.
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II. STATE OF THE ART

“Without work, which is art, there is nothing.”
Gabriel Fauré

A. Optical Music Recognition

OMR is a field of research that investigates how to computationally read music notation in documents [2]. Essentially, given
a picture or a scan of a musical score, either handwritten or typeset, an OMR system aims to produce a symbolic representation
of the said score that can be processed by a computer. The level of detail of such a representation very much depends on the
intended application, but most common output formats span MusicXML or MEI when a full reconstruction of the score is
required (that is, one would want to replicate the exact same input score) or MIDI when playback is the final objective. This
definition is focused on the offline recognition scenario, the main focus of this work, but there are other works which tackle
online OMR – recognition of scores where the input is the temporal sequence of strokes to produce them.

OMR is a field which is very closely related to others in the Computer Vision community. In particular, it is interesting
to draw a parallel to Optical Character Recognition (OCR), which attempts to produce a symbolic representation of textual
inputs. Nevertheless, some unique properties of music set both fields apart quite considerably:

• Music, unlike most widely used alphabets for natural language, is bidimensional by nature, as it encodes pitch and time of
musical elements. As a result, the relative position of objects in both axes is relevant for successful recognition. Moreover,
music can have multiple voices playing in parallel on the same staff, further complicating recognition.

• The syntax of music is less strict; scores may be engraved in many different equivalent ways, of which only a few are
preferable mostly for readability reasons.

• Music is not a language in the proper sense of the word, as it does not form a proper system of signs [3]. There are no
underlying common semantics in music, even if there are some reasonable parallelisms to be made considering elements
such as motifs, phrases and the like. Context-based inference is therefore harder.

There are some other parallels to be made with Document Analysis and Understanding, as the interaction of objects within
the score is reminiscent to regular document layout analysis as well as there being a motivation for layout analysis in music
in the form of separation of staves from lyrics. Bosch-Campos et al. [4] delve into the matter by using established OMR
architectures for layout recognition and classification.

In terms of the types of data that are currently under study in the field of OMR, two broad categories of documents are to
be considered: typeset scores, both scanned and computer-generated, and handwritten scores. The former case is quite mature
with low error rates, especially for MIDI-like outputs [5]. There are many available datasets for this sub-task: the Deepscores
dataset [6], [7], with object-level annotations but no fully-reconstructive nor playback baselines, the DoReMi dataset [8], which
provides examples in most available formats – MEI, MusicXML and MUSCIMA++ –, the PriMUS dataset [9], with output
sequences as target and plenty of websites and repositories devoted to music – e.g. MuseScore or the IMSLP project – with
limited amounts of accurately labelled data. Synthetically generated music is also used broadly [10].

Fig. 1. Example page from Bach’s original manuscript of the Brandenburg Concerto. Many of the common paper artifacts and typical handwriting irregularities
can be seen: ink stains, paper degradation, irregular symbols, etc.

Handwritten music, on the other hand, and especially when stored in historical documents, is a much harder task (see
Figure 1 for an example). Aside from the irregular nature of handwritten scores and the possible degradation and artifacts
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present in the paper, there is a severe lack of properly annotated data to address the problem. The CVC-MUSCIMA [11] and
the MUSCIMA++ [12] datasets are two of the most prominent for current western notation, the latter being fully annotated
at a symbol level. For sequence-like outputs in historical scores, the Pau Llinás Dataset [10] is another small example. The
IMSLP project and several other libraries throughout Europe contain some digitised documents, but they are generally not
transcribed, which greatly limits their utility. Other datasets are aimed at notation formats other than western music notation
such as mensural notation: the Capitan [13] or the SEILS [14] datasets.A comparison of the difficulty leap between typeset
and handwritten scores may be found in [15].

Prior to the 2011 Deep Learning revolution, most OMR practitioners focused on incremental pipelines in which each step
was independent from the rest. These pipelines usually follow a prototypical structure, as described in Rebelo et al.’s review
on the field [16]:

• Image Preprocessing: This step includes standard document analysis preprocessing steps such as document binarisation,
de-warping, de-noising and the like, but also contains some music-specific steps. Most notably, the step that has probably
received most attention in the OMR literature is staff removal [17]–[20]. The importance of this step used to be paramount,
as staff lines made detecting other musical objects on the page significantly harder [16], [21]. Other steps such as
binarization have been investigated for specific types of documents such as handwritten old scores [22], since in this use
case the documents are usually in a very rough state and a substantial amount of noise is propagated downstream in the
pipeline, reducing the overall performance.

• Recognition: This step involves segmenting and classifying the musical symbols on the page. This is usually implemented
with standard classifiers and can be done either at a primitive level [23], [24], which implies classifying the components
of the musical objects separately (stems, noteheads, dots, etc.) and then joining them through heuristics into higher level
constructs, or at a full object level, which uses a classifier with the entire connected component in question [25].

• Reconstruction: This step involves building the music semantics from the recognised objects. This step considers the
relative position of elements in the page and interprets the relationships between all of them. Approaches such as Coüasnon
et al.’s DMOS [26] provide ways to formalise these position-wise relationships in the form of “graphical” grammars.
Other attempts use hard-coded heuristics or try to build a sequential output such that a regular grammar can be used to
build the final notation [27], [28].

• Musical Model: Once the relevant relationships between objects are defined, the final step is to construct a model of
the full score that can be used to rebuild or process it computationally. The target output formats are most usually
MEI, MusicXML or MIDI, depending on the downstream application. As aforementioned, using grammars is one of the
preferred methods to construct these models.

With the revolution in the fields of Artificial Intelligence and Computer Vision birthed on 2011 with the introduction of
AlexNet [29], the OMR community followed some of the new coming trends and started implementing parts of this pipeline
using Neural Networks. Steps such as music symbol segmentation have employed Deep Object Detectors such as U-nets [30],
[31], Faster-RCNN [7], [32], Deep Watershed [7], Fully Convolutional Networks [33], [34] or Single-Shot Detectors [33], [35],
to name a few.

Nevertheless, recent trends are straying away more and more from this path, as with the advent of very powerful Deep
Learning models during the latest decade it has been found that it is possible to use end-to-end approaches for OMR, in particular
for historical handwritten scenarios. The main motivation is that, for these situations where no object-level segmentation is
available, the model is able to infer the structure of the music primitives using only the ground truth transcription.

One of the first models to use this approach was borrowed from the OCR community (which is a frequent trend in OMR as
both fields do have quite some overlap even if music is indeed a more complicated notation system). This model, pioneered
in OMR by Calvo-Zaragoza et al. [36], consists on a Convolutional Neural Network (CNN) followed by a bidirectional
Recurrent Neural Network (RNN) block implemented using Long Short-Term Memory units [37] that outputs a per-primitive
representation of music in the form of a sequence. In particular, for every feature column vector in the convolutional output, a
single output token is produced. The model is trained using the Connectionist Temporal Classification (CTC) loss [38], which
merges any duplicate predictions that belong to the same symbol and are placed sequentially. This method reduces the OMR
problem to a column-wise classification one essentially. This method was successfully used on handwritten scores in mensural
notation and also for MIDI-like outputs [39].

In the same line, there is the Sequence to Sequence (Seq2Seq) family of models, which are closely related to CTC ones. Baró
et al. [10] propose an attention-based Seq2Seq model based on [40] for OMR that is suitable for both typeset and handwritten
scores in Western Music Notation. The model consists on a CNN feature extractor followed by an RNN-based encoder-decoder
such that the input for each time step of the decoder is produced by a weighted sum of the encoder’s output, obtained using
the aforementioned attention mechanism. Music is yet again modelled as a sequence of arbitrary length by defining special
column separation tokens and a reading order. A follow-up work which improves results on handwritten scores is [41], which
incorporates a Language Model in order to introduce a grammar-only bias to the model which balances visual ambiguities.

In all cases in which the output is modeled as a sequence by defining a reading order there are strong limitations. For
instance, reconstructing a polyphonic score unambiguously is impossible, because there is no telling of what sets of primitives
belong to what voicings from the notation alone. The definition of the reading order is also ambiguous because top-to-bottom
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left-to-right relationships can only be safely assumed in strictly homophonic scores. Moreover, the notation reconstruction step
is usually not implemented.

B. Transformers

The Transformer [42] is a model which was birthed in the context of Natural Language Processing (NLP) for translation
tasks. It is the logical evolution from the Seq2Seq family of models, which have plenty of practical shortcomings:

• The existence of a recurring step makes inference inherently slow and computationally expensive, especially for very long
sequences.

• Long sequences require recurrent units to keep “memory” of earlier elements for a large amount of steps, which in practice
is difficult.

Transformers address these two problems by encoding the input sequence in a single step using self-attention. Broadly
speaking, the representation of each element in the sequence is enhanced with successive linear combinations of projections of
all elements in the sequence, such that a representation of the full context of the input is produced. The decoder is then tasked
with producing tokens related to the entire encoded input and the previous predictions, therefore the model can be trained
using a cross-entropy loss.

The model was highly successful, which spawned plenty of variations of the same concept (e.g. the Conformer [43], a
Transformer that employs both convolutional and self-attention layers) and inspired applications in fields other than NLP, such
as vision. The most widely known case of the latter is the Vision Transformer (ViT) [44], in which images are divided in
a set of patches, each being projected into a common space using a feedforward layer, and then using them as the input
sequence. This model also uses the extra token found in BERT-like models [45], a technique which was found highly effective
for pre-training transformer models. Interesting variations of this model include the Cross-ViT [46] and the Swin Transformer
[47], which incorporate multi-scale feature extraction improvements to the model.

Another relevant variation of the transformer for the task at hand is the Detection Transformer (DETR) [48], which tackles
the problem of object detection using Transformers by incorporating a series of learnt object queries into the decoder and
relying on cross-attention between these object queries and the encoded input to generate object predictions. The encoder
may use any CNN as a previous feature extractor and then processes the resulting feature vectors. A bipartite graph matching
algorithm is required to match predictions with the ground truth, which makes this model computationally expensive.

To the best of our knowledge, very few works [49], [50] thus far have attempted to work in OMR using Transformers, with
rather underwhelming results. In the first one, the authors used a DETR to produce an OMR system based on object detection,
but the intrinsic limitations from the model in the number of objects in the input image seem to have limited their results. The
latter uses various combinations of Transformer modules, CNNs and CTC-based decoders on various datasets – PriMUS [9]
(typeset), Capitan [13] (Handwritten), Fondo de Música Tradicional 1 (Handwritten) and SEILS [14] (Scan Typeset) – with
regular 1D sequences as target.

Other fields which are interesting and related to OMR with relation to the output formats that are tackled (sequences or trees)
are Document Understanding – in particular, the DoNUT model [51], which produces a JSON from an image of a document
– Code Generation and Translation, in which Abstract Syntax Trees are used either as inputs or outputs [52], [53] or Natural
Language Processing.

C. Self-Supervision

As models become more and more data hungry, the problem of having sufficient annotated data for successful convergence
deepens. With this concern in mind, techniques have been developed in order to train models without requiring annotation by
developing pretext tasks that only use the raw input data, a concept that is called Self-Supervision. With these pretext tasks
models are forced to learn useful feature representations of the input data, thanks to which developing models for downstream
tasks becomes both easier and less data-reliant.

Initial efforts in this direction consisted on the application of autoencoders [54] on noisy versions of images with the
pretext task of de-noising them back to their original state. As Deep Learning models matured, more intricate techniques were
developed, such as image colorisation [55], patch ordering [56] or weak classification [57] – learn to distinguish versions of
the same image from other images.

With the recent surge in the use of Transformers, specific pre-training techniques have been devised for them. Masked
Autoencoders [1] are a pre-training task in which a Transformer receives an image with 75% of input patches masked out and
is set to reconstruct the original image. Variations on this idea include BEiT [58], in which instead of reproducing the input
image the model is tasked with predicting a token that corresponds to each masked patch.

1https://musicatradicional.eu/
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III. PROPOSED DATASETS

“I am delighted to add another unplayable work to the repertoire.”
Arnold Schönberg

A. The Music Tree Notation format

The basis for our approach to OMR as an end-to-end image-to-sequence task is our authored MTN, which represents music
as an Abstract Syntax Tree (AST) that can be expressed a text sequence. Figure 2 shows the division of score elements into
primitives and how from these primitives the notation format is constructed. It is designed to be closely related to MusicXML
because of its ubiquity and its inherent dissociation between the visual representation of a given score and its playback. It is
therefore possible to produce a “music-agnostic” notation format in which semantics – e.g. musical pitch or duration – are
extracted by relationships of graphical primitives instead of requiring the model to learn them explicitly. We work under the
hypothesis that the underlying graphical language in musical scores, based on proximity and contact of well-defined primitives,
is better suited for recognition than high level musical concepts. This also has practical advantages due to the fact that no musical
context of elements such as key or time are required for recognition, allowing the reconstruction of the final representation by
reading self-contained subsets of the score.

Fig. 2. Example showing the overall organisation of the dataset. Given a score, it shows the division into primitives and how these primitives relate into
building the notation for a single measure.

Another key aspect of this system’s design is the fact that a sequential model shall build the final notation tree in bottom-up
fashion; starting from the leaves (which we interpret as terminals of a generative grammar) up to its root, navigating all
intermediate nodes (which we interpret as non-terminals of a generative grammar). In other words, we expect the model to
develop an internal grammar to be able to produce an AST from the graphical terminals it detects. This effectively sidesteps
one of the most complex aspects of working with OMR as a whole, which is inferring the relationship between the various
detected primitives to produce a playable score.

The core element of this notation format is the musical primitive, which is a terminal in the output AST. The set of musical
primitives includes all graphical elements in a score that are self-contained and require no other symbols to convey meaning
(this includes rests, clefs or time signatures), the set of letters and numbers in order to spell annotations and tempo indications
and the set of graphical elements that compose notes (noteheads, stems, flags, dots, etc.).

The maximal element that our notation format is designed to represent is the musical measure at the single-staff level. The
ideal scenario would be to predict entire lines, as they are almost always completely context-agnostic in properly engraved
scores – all of the ongoing elements such as key, time signature and clef are repeated at the start of a line, with the only
possible context-sensitive elements to account for being ties or slurs ongoing from an earlier line. Nevertheless, this poses some
technical problems for transcription models since a significant amount of image detail is lost by having to include a larger
slice of the score into a fixed-size model, while also having to predict much lengthier output sequences. Predicting measures
solves this at the expense of requiring more complex pre and post-processing of scores; the input image needs to be cropped
into measures for inference and the output notation is to be produced from combining and interpreting the outputs of many
images.

The sequence of elements that represents the AST is built by reading the leftmost primitive in the score from the main
voice (that is, the set of musical elements that spans the entire bar horizontally and amounts to the time signature number of
beats) and then reading onward vertically. All elements pertaining to the same vertical position and voice will be grouped into
a vgroup (vertical group) non-terminal, whereas all primitives that form a connected subgraph horizontally will be added
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TABLE I
SUMMARY OF THE WORKS USED AS DATASETS AND SOME GLOBAL STATISTICS.

Name Moniker Composer Samples Length Source

Brandenburg Concerto No. 3 Brandenburg Bach 2014 102.57± 48.64 OpenScore
The Art of the Fugue Fugue Bach 6532 51.38± 30.26 OpenScore

9th Symphony 9th Beethoven 44003 39.53± 27.69 OpenScore
Jupiter Symphony Jupiter Mozart 10275 35.01± 23.44 OpenScore

into an hgroup (horizontal group) non-terminal. In order to resolve ambiguities of elements pertaining to the same vertical
element but to different objects within it, other non-terminals are added for notes, stems or any terminals that can appear
repeated under the same object (such as dots or beams). Earlier drafts of the format included parentheses as tokens in order to
group child elements in lisp-like fashion, but this was dropped due to the high level of context awareness needed to produce
these parentheses correctly, as well as the extreme unbalance in the dataset they produced due to their ubiquity.

In order to represent elements that sound in unison but are not graphically tied to the main voicing, additional voice objects
can be created to represent them. At the current specification of the format however there is no way to horizontally align the
secondary voicings to the main one, as the assumption of beat adding up to the last known time signature value can be broken
for these secondary voicings. Similarly, with double-staff pieces, the main voicing can move along two separate staves, which
means measures read in staves separately may have an incomplete amount of beats. We solve this by using single-staff works
for our experiments.

Notes are a special primitive in that its vertical placement in the score matters, while also having many symbols attached
to them. Therefore they are modeled using a “note” non-terminal that includes a notehead, a pitch expressed as the number of
positions to move from the first ledger line below the staff and optional elements such as accidentals, ties or slurs that depend
on them. The pitch of the note is expressed using a non-terminal “pitch” with each individual numeral character terminal as
children.

In order to represent slurs, ties, glissandos, crescendos, diminuendos and other multiple-note-spanning elements, starting and
ending elements are used to indicate their origin and end.

B. Generation of Training Data

Randomly generated synthetic scores are a good way of providing extra data to work with. However, for the task at hand
it may not be the cleanest solution, as the intended output is in the form of a sequence and conditional probabilities between
elements of said sequence matter. Therefore, we assume it is better to provide musically plausible training examples, as the
model should be better able to identify musically plausible sequences. For instance, there are certain accidentals that are more
likely to appear under certain keys than others – having a sharp 7th degree in a minor scale is an indication of a dominant
major chord, which is a fairly common aesthetic resource.

For the experiments in this document we decided the best road was to use transcriptions in real scores produced in MusicXML.
To the best of our knowledge, the only official dataset with such transcriptions is DoReMi, which we initially considered using.
However, there are a few practical problems about it. The first one is that it does not have measure-level images, but rather line
level ones, which implies there is a need for automation on the measure cutting. We implemented it exploiting the primitive-
level annotations within the scores, but found it to be sometimes inconsistent with certain primitives such as double barlines.
Furthermore, there were problems with some lines being split in multiple images, which made guaranteeing alignment of score
and representation impractical overall.

Instead, we chose a catalogue of works from a similar period (late baroque and early romanticism, 18th century music). The
idea is that these works have plenty of commonalities among themselves, they are in the public domain and they are relatively
simple, in the sense that they do not contain too many virtuosistic movements nor highly elaborate playing indications. This
solves another downside of using the DoReMi dataset for this task, which is that the catalogue of works within is of extreme
complexity, which makes it a rather poor choice for a first proof of concept.

In Table I some generic statistics about number of images and sequence length may be found. The column “moniker” refers
to the shortened name that shall be used to refer to each dataset in due context from here onward. In Figure 3 a histogram
shows the number of samples within a certain length range for each dataset. Detailed numbers for each range and dataset are
provided in Table II.

In order to produce the images for the dataset, a pipeline using various programs is orchestrated through a simple bash
script. The overview of this pipeline may be found in Figure 4.

The main problem to overcome for dataset generation is that most pieces of software we are acquainted with do not produce
measure level rasters of scores by default. Instead, we found Verovio to be largely compatible with MusicXML outside the
box, even when it is designed primarily to engrave MEI scores. Moreover, its output format is SVG, which is based on XML
and therefore easily and quickly modifiable without requiring image processing. This greatly simplifies the generation of the



MASTER THESIS DISSERTATION, MASTER IN COMPUTER VISION, SEPTEMBER 2022 8

TABLE II
COUNTS FOR EACH RANGE OF LENGTHS IN EACH DATASET.
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Brandenburg 54 174 288 571 442 155 173 62 10 72 11 2 0 0 0 0
Fugue 1179 2521 2125 1525 587 209 209 74 11 78 13 3 10 2 0 0
Jupiter 4676 6821 3422 2427 721 274 228 114 13 78 25 10 10 2 0 0

9th 20538 27204 8684 3948 1451 345 326 152 19 84 40 13 12 5 1 2

Fig. 3. Histogram with the number of samples in each dataset within a given length range in the X axis. The total sum of samples within each range is seen
above each column.

dataset because some of the engraver’s automated features (such as adding key, clef and tempo at the beginning whether or
not it is actually in the MusicXML file) can be overridden by modifying an XML file, where identifying elements can be done
by name and not by visual features.

The full pipeline works as follows. From the desired input MusicXML file, a Python script produces separate MusicXML
files for each measure of the score. Since the running state of the score – alterations, clef and time signature – must be kept for
later measures to be consistent, in all but the first measure an extra bar with the state of the score is added in the MusicXML
file for Verovio to engrave the music properly.

Once these MusicXML files are produced, Verovio is used to generate an SVG file of the desired measure (and the
aforementioned state measure before it). Using another Python script, the first measure of the image is found by exploiting
XML identifiers in the SVG file. This first measure and all of its contents are removed from the image altogether.

The problem now is that the resulting SVG has a gap where the measure used to be, as all coordinates in the rest of the
file are produced w.r.t. the top left corner as originally engraved. To solve this, the image is rasterised into PNG format using
Inkscape and then the image is cropped to fit the contents using the convert tool from ImageMagick.

We shall now rationalise some of the decisions taken in the design of this pipeline. The decision of splitting the MusicXML
file into smaller measure-level files came from the fact that Verovio is designed to engrave full pages, not single music
measures. We could not find a reliable way of producing multiple-part scores measure-wise without having to deal with line
breaks (which insert clefs and keys at the beginning which are not present in the notation), page breaks – Verovio renders each
page separately, with similar issues as those from line breaks – and the other context-sensitive elements. The downsisde is
that the system only produces one key, clef and time signature symbol at the beginning of each part, unless there are changes
mid-piece.

The script that removes unneeded elements also performs some data-specific modifications. For “Fugue”, the fifth part of
the score is a two-staff element which also happens to be a reinterpretation in a piano-like form of the four preceding parts.
Therefore, as we do not fully support multiple-staff scores yet and we do not want to introduce unwanted redundancy, we
remove that specific part to avoid problems. Also, as many of the scores we use in this set of experiments are orchestral, which
means there are extensive passages where some instruments will only have whole rests in their measures. As this would heavily
unbalance the dataset and probably cause some unwanted overfitting effects, we stochastically remove these such measures
with a probability of 95%.
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Fig. 4. Dataset generation pipeline. This only includes rastering the images using a score source in MusicXML. The notation underlying each measure can
be produced independently.

IV. MODELS

“Essentially, all models are wrong, but some are useful.”
George Box

A. Sequence to Sequence

This piece of research builds upon previous works in OMR that interpret music as an image-to-sequence translation task.
Therefore, we implement an existing state-of-the-art model to see how they behave under our proposed notation format in
order to establish a baseline.

The first model we shall introduce is the attention-based Seq2Seq model from [10], [40], [41], which is represented graphically
in Figure 5. The core idea of this model is treating image transcription tasks as an image-to-text translation problem, which
avoids the need of a fine-grained object-level dataset as the model can infer the relationships between objects in the image
input and tokens in the sequence output. The downside is that there is less control in the inner workings of the model, as the
single optimisation driving force in the model is the loss for the output tokens at the end, as well as the requirement for more
intricate models capable of doing multiple tasks at once (feature extraction, representation learning, soft-alignment, etc).

This model is composed of three main components: a backbone CNN that extracts image visual features, an encoder that
generates a global context-aware intermediate representation and a decoder that, given said representation, produces the output
sequence.

The backbone CNN for this model is a VGG19 [59], a highly dense network that has proven to be quite performant along
the years. It consists of 16 convolutional layers and 3 fully connected layers (which are discarded in this work alongside the
last max pooling layer, as they are not needed). The output of this process is a B × C ×H/16 ×W/16 tensor, where B is
the size of the batch, C is the number of output channels (512 for the VGG19, as it is the depth of the last convolutional
layer) and H and W are the height and width of the input images respectively. In order to interpret this output as a sequence,
this tensor is reshaped into a B ×W/16 × (HC/16) one, where the width now represents its length and every vector along
it represents the information of a vertical slice of the image.

The Encoder is a stack of N Gated Recurrent Units (GRU) [60], a variation of RNNs that tackles some of their intrinsic
problems – vanishing/exploding gradients and fading memory. The goal for this encoder is to produce a context-aware hidden
state from the visual features produced by the CNN. In other words, the goal is for the feature vectors in the hidden state to
represent not only the contents of a certain area of the image, but rather incorporate information from all positions in order for
the model to be able to construct higher-level semantic constructs and establish dependencies between objects throughout the
input. Therefore, instead of using regular GRUs, which would produce an incrementally context-aware representation from left
to right, bidirectional units are employed, so that for every position full-width context is available. The resulting tensor H is
of shape W ×D, where D is the dimension of the GRU units – the tensors for both directions at each position are averaged.

The Decoder is the module that generates the actual output sequence. It is composed of a stack of unidirectional GRUs
whose input is the result of an attention mechanism on the hidden vector. The final token output is produced from a linear
layer atop the model with dimension Nvocab, after which a Softmax function is applied.

This model uses Bahdanau attention [61] as weighting function for the hidden state. This method leverages various sources
of information within the model with the goal of obtaining an energy vector e ∈ RW such that

∑W
i=1 ei = 1. This energy
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Fig. 5. Overview of the Seq2Seq model employed in our preliminary experiments.

vector is used to weight the relative importance of each vector in the hidden state for the current prediction step, computed as
h = HT · e. In order to obtain the n-th value of e at inference step t, the model computes

etn∗ = wT tanh (Wsst−1 +Whhn +Wpfn + b) (1)

where Ws, Wh, Wp are parameter matrices, w and b are parameter vectors, st−1 is the last hidden vector of the decoder at
the previous inference step, hn is the n-th vector in the global hidden state and fn is the n-th vector of matrix F , a function
of the previous attention weights computed as

F = Q ∗ et−1 (2)

where Q is another parameter matrix and ∗ denotes convolution. To enforce that the weights should add up to 1 then

etn =
exp (e∗tn)∑W
i=1 exp (e∗t i)

. (3)

The overall model is trained using cross-entropy loss on the final output of the decoder.

B. Transformers

RNN-based Seq2Seq models, as hinted in the state-of-the-art section, are quite troublesome to work with for practical
reasons. The main and most relevant reason is the fact that they are recurrent and autoregressive, which makes them compu-
tationally ineffective for training: the dependence on the prior inference step makes these models rather unsuitable for parallel
computations, as the data path limits the amount of compute to that of a single update which is usually lower than the compute
capacity of a GPU.

The Transformer [42] is an encoder-decoder sequence-to-sequence model which tackles the shortcomings of RNN-based
encoder-decoders by processing the input sequence in parallel relying on a self-attention mechanism exclusively. With regard
to the overall architecture, Transformers maintain the Encoder - Hidden State - Decoder module structure, with the possibility
of omitting the latter or extracting features with a separate CNN. The model we propose is a fairly standard iteration of this
idea in which a Vision Transformer is used as the Encoder and the Decoder is a regular transformer decoder.

First, we shall describe global Transformer architecture elements, as both Encoders and Decoders are fairly symmetrical.
These common elements are the scaled dot product attention operation, the self-attention layers and the input positional
encoding.

The core element of the Transformer is the attention function, which produces a representation from matrices of query Q,
key K and value V vectors. The scaled dot product operation is written as

FAttention(Q,K, V ) = softmax
(
QKT

√
dk

)
V. (4)

The softmax
(

QKT

√
dk

)
part of the operation is reminiscent of the computation of the e vector in the Bahdanau attention regime.

Given a set of possible relevant positions within the vector (keys), one wants to find those that are relevant to the current
inference step (queries). The dot product acts as a sort of “and” operator, a similarity metric between what is “searchable”
and what is to be “searched”. There are two further additions to the weight computation, which is the scaling by

√
dk, the
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Fig. 6. Positional embedding mask example.

dimension of the key vectors, and the softmax function. The former is done to control the magnitude of the dot products,
whereas the latter is applied in order to conform to the restriction that all attention weights in a vector should add up to 1.

Once the attention weights are obtained, they are multiplied by the set of value vectors to obtain the desired representation.
Using once more the data retrieval abstraction, this would be analogous to extracting the all of the desired elements from a
given database once the information from the structure of the database and the query performed against it are interpreted.

The matrices Q, K, and V are produced by projecting the desired input elements into a shared space using a linear
transformation. For the Transformer encoder, these three matrices are projections of the same input sequence, which is called
self-attention. The logic behind this operation is that the model successively generates attention-weighted versions of the same
input sequence, which effectively produces highly context-aware representations. In the decoder self-attention is used alongside
cross-attention, the latter being a variation in which the queries and keys are produced from the hidden vector at the end of
the encoder and the values come from the sequence processed at the decoder.

The generic Transformer works the following way. Given an input sequence of length W , an embedding process generates a
W ×D matrix, where D is an arbitrary dimension number. Since all elements are to be processed in parallel, a mask is added
to all vectors to encode the relative position of each element within the sequence for the model to be able to tell it apart. In
the original paper, sine and cosine functions were used to emulate an intermittency effect (see Figure 6):

PE(p, d) =

{
sin

(
p/100002d/dmodel

)
ifd/2 = 0

cos
(
p/100002d/dmodel

)
otherwise

(5)

where d is the position along the embedding vector and p is the position in the sequence. The original paper remarks learnt
positional embeddings produce similar results.

Each Transformer encoder layer is composed of multiple self-attention layers in parallel (self-attention heads), whose outputs
are concatenated and projected back into the original dimension, and a simple feed-forward layer. There is a residual connection
around both layers, combining both sources by addition and using layer normalisation [62] afterward.

Transformer decoder layers are the autoregressive part of the model. Their input is the sequence produced so far (properly
embedded and positionally encoded), and need to be run as many times as elements in the output sequence. In practice, the
input is as wide as the maximum output sequence, with elements not yet needed or produced masked by multiplication. This
can be exploited to train in parallel all elements in the sequence by providing the ground truth sequence and masking all
positions after the n-th inference step.

Functionally, the decoder is very similar to the encoder, with the main difference being an extra cross-attention layer after
the regular self-attention one. This cross-attention layer uses the same attention mechanism described earlier, with queries and
keys being projections of the encoded sequence and values being a projection of the previous layer in the decoder. It also has
a residual layer around it and layer normalisation afterwards.

The final outputs are produced by linearly projecting the output logits for each element of the decoded sequence into a
ntokens dimension vector. Cross-entropy loss is used for training.

The Transformer model we propose for OMR is a fairly standard encoder-decoder in which the feature extractor is a Vision
Transformer (ViT) [44] and the decoder is the original Transformer decoder with cross-attention and masked input sequence.
The overall architecture can be seen in Figure 7.

The ViT is basically a regular Transformer encoder, with two key differences. The first one is the fact that it uses images
as input instead of sentences. Images are fed into the Transformer by cropping them into patches and using a linear layer
to embed them into a d-dimensional space. The second difference is the fact that the ViT is a BERT-like [45] model, which
adds an extra input token which is used at the end once encoded for classification purposes. The same kind of 1D positional
encoding is used, as in the original paper [44] it is stated they saw no significant changes using more elaborate encoding
schemes. We use the vit-pytorch package 2 implementation.

C. Pre-Training

As the goal is to achieve good recognition of scores, it is rather important to make the most of the available data. Furthermore,
as the models are trained with the output sequence as target only, initial convergence of visual features might either be slow or

2https://github.com/lucidrains/vit-pytorch
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Fig. 7. Overview of the Transformer architecture proposed for OMR in this work.

downright ineffective. We explore the usage of some of the available OMR datasets in order to implement a robust pre-training
strategy; in particular, we decided to use DeepScores v2’s [7] large collection of typeset images for their variety, the different
engraving fonts available outside the box and the sheer volume of scores packed within (255, 385 images with 151 million
objects).

The DeepScores v2 dataset is designed to perform OMR by tackling the problem as an object detection task at a page
level, which is incompatible with our current design. We modify the dataset in order to obtain measure-level images. We
do so by using the original annotations of stave objects to isolate music lines and by finding barlines in the score through
mathematical morphology, as they are not part of the original repertoire of objects. The downside of this approach is we cannot
guarantee inequivocally that we are cropping the entire dataset in a sensible manner, but our probing efforts demonstrated that
failure cases were rather rare and harmless – we saw some cases of double end barlines being identified as a full measure by
themselves, but their appearance was inconsistent. With this we produced 10, 143, 883 non-annotated images.

The pre-training technique we use is the one proposed in [1]. They develop an image reconstruction proxy task in which the
model has to generate the input image from a masked version of it. The full model consists of a ViT as an encoder and a lean
Transformer decoder which will be scrapped once the model is pre-trained. The idea is to randomly mask 75% of the regular
non-overlapping patches that form the input image; the ViT encoder receives the unmasked patches only, whereas the decoder
receives a sequence of the same length as the initial number of patches with masked or non-masked tokens accordingly.
From each element of the decoder’s output sequence, a pixel-wise reconstruction of the input patch is produced. The model is
trained to reduce the per-pixel Mean Squared Error.

D. Data Augmentation

Another relevant aspect of training these kinds of models is avoiding possible overfitting. A possible option to enrich the
statistical variability of the input images without requiring more data is using data augmentation on the images. We propose
a simple pipeline with the following transformations: A minor random affine transformation to change the angle between the
elements of the image without changing whether or not the elements stay parallel and a random Kanungo noise function with
1/3 probability of producing an aggressive augmentation, a normal augmentation or an identity function.

As the input is binarised and the full image is required for proper inference, no aggressive cropping nor color changes are
used. Moreover, Kanungo noise is quite similar to salt and pepper noise while being more canonical with documents, which
is why the former is not used either. Some examples of augmentations may be found in Figure 8.
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Fig. 8. Examples of the data augmentation pipeline, which is stocastic in nature so as to provide input image variety to the training examples.

V. EXPERIMENTS

“The first principle is that you must not fool yourself, and you are the easiest person to fool.”
Richard Feynman

In this section we shall describe the experiments we plan to perform in order to assess the quality of our proposed OMR
method.

For most experiments, we use the combination of the Fugue, 9th and Jupiter datasets as the training partition and the
Brandenburg dataset as the validation partition. The motivation is twofold: the training datasets are the largest available to us,
while the Brandenburg dataset is well-aligned to all of the other ones in terms of the distribution of tokens. Having a smaller
validation dataset also has the added benefit of reducing the time required for Transformers to do inference, a process which
takes orders of magnitude longer to perform than regular training owing to the Transformers’ autoregressive nature.

A. Exploratory search

We first run the model with diverse hyperparameter and layer configurations in order to understand their effect on the output’s
quality. For these experiments we use the full sequence length of the datasets.

B. Sequence to Sequence

A first experiment to build upon the previous state-of-the-art and motivate the move to transformers is using RNN-based
Seq2Seq models. We experiment using our new notation format using old models and assess their results with relation to those
experiments with transformers.

C. Transformer Pre-Training

We assess whether using a pre-trained ViT feature extractor improves recognition performance. The parameters that we fixed
for the encoder are standard, with the input image size being a slight adjustment on the default ViT parameters in order to
adjust to the aspect ratio of measures while keeping the number of input patches equal. The parameters are shown on Table
III. We also assert whether it is better to keep the encoder weights frozen while training the full model.

TABLE III
HYPERPARAMETERS FOR ALL ENCODERS IN THE EXPERIMENTS.

Layers 6 Heads 8 Input Size 512× 128 Patch Size 16

D. Loss Weighting

The datasets we are using are quite unbalanced in terms of frequency of appearance of certain tokens. We design experiments
to test whether adding a weight factor into the loss changes either the training process or the overall result to be better in any
way. We attempt using the straightforward interpretation of each token prediction as an independent random variable, with the
goal of forcing the expected value of the loss to be equivalent to randomly guessing between ntokens elements. Therefore,
given the cross-entropy loss function
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ℓ = −
N∑
t=1

kt log p(xt) (6)

where kt is a weighting factor, p(xt) is the probability distribution of the output tokens as provided by the model and N is
the size of the vocabulary, we want to force the expected value of this loss to equal

E [ℓ] =
N − 1

N
. (7)

The way to compute this is by setting weights kt = max p(x)
p(x=t) and normalising back to the range of [0...1]. The weights

therefore oscillate between 1.0 and roughly 1.0 · 10−5. For supporting tokens such as end of sequence, we keep the 1.0 weight
value due to their importance.

E. Changing the output length

As can be seen in Figure 3, the lengths of output sequences reach up to the 400 mark. Nevertheless, the overall length
distribution is rather long tailed, with sequences of less than 125 elements representing more than 95% of the samples. Lengthy
sequences are known to be an issue with most Seq2Seq and Transformer models [63], and thus we provide experiments with
reduced length versions of all datasets.

Since the model should produce all instances of the validation dataset, we perform the same length reduction to both the
training and the validation datasets, as downward changes in the performance could be justified by the model’s inability to
produce lengthier outputs. This of course causes the problem of not being able to directly compare results between runs of
differing length, but does provide valuable insights on models trained for same-length datasets or in order to study outputs
qualitatively.

F. Cross-Validation

In order to ensure the choice of the dataset partitions is not forcing a wrong picture of the model’s capacity to recognise
scores, we cross-validate the model by alternating the validation dataset between the Brandenburg, Fugue and Jupiter works.
We avoid using the 9th symphony for this purpose as this work comprises roughly 40k images, depriving the model of the
majority of the available training data and needlessly extending validation runs.

VI. RESULTS

“Forty-Two”
Deep Thought

We shall now present the results of the experiments we conducted to test our proposed MTN notation and the two discussed
architectures.

A. Evaluation

The Symbol Error Rate (SER) metric is used to evaluate the performance of the models, shown in tables in percentual
points. The SER is a metric that summarises the number of edits (substitutions, insertions or deletions) of tokens required to
obtain the ground truth sequence from the predicted sequence. The value is then normalised using the length of the output
sequence. In mathematical notation,

SER%(ŷ, y) =
I,R, S

length(y)
· 100, (8)

where I, R, S are the aforementioned insertions, removals and substitutions obtained from the optimal edit path generated by
Levenshtein’s algorithm [64] and ŷ, y are the predicted and ground truth sequences respectively.

B. Sequence to Sequence

For Seq2Seq models we found ourselves unable to make the model converge into anything sensible with full-length sequences,
as can be seen in Table IV. In all cases the model converges into a trivial solution state in which the produced sequence is
always the same (see Figure 9). We suspect this is due to both the average length of the training samples and the relative
presence of vgroup tokens – 3 per image on average. The other explanation might be the length of the sequences being too
high, with updates for each time step smoothing out and vanishing when backpropagating towards the first elements of the
sequence.
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TABLE IV
RESULTS OF RUNNING THE SEQ2SEQ MODEL WITH FULL LENGTH DATASETS. COLUMNS FROM LEFT TO RIGHT: THE AMOUNT OF LABEL SMOOTHING,
DROPOUT AND WHETHER TO WARM UP THE LEARNING RATE AS HYPERPARAMETERS, AND THEN THE SYMBOL ERROR RATE IN PERCENTUAL POINTS

AND LOSS FOR BOTH TRAINING AND VALIDATION. USING BRANDENBURG FOR VALIDATION AND THE OTHER DATASETS AS TRAINING.

Label Smoothing Dropout Warmup Learning Rate Train. SER(%) Valid. SER(%) Loss (Train.) Loss (Valid.)

0.1 0.25 False 5.0e− 06 196.5± 132.5 97.69± 26.95 3.111 3.037
0.05 0.1 False 1.5e− 05 196.5± 132.5 97.69± 26.95 3.236 3.09
0.1 0.5 False 1.0e− 05 196.5± 132.5 97.69± 26.95 3.058 3.035
0.1 0.25 True 3.0e− 04 196.5± 132.5 97.69± 26.95 3.073 3.032

Prediction

vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup
vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup
vgroup vgroup vgroup vgroup vgroup vgroup vgroup vgroup

Fig. 9. Output from a validation sample of a Seq2Seq experiment.

C. Encoder Pre-Training

Due to the volume of data required and the limited amount of time and resources we had, we could only train one instance
of the ViT, which took around two weeks for a total of 17 epochs with a final pixel average MSE of roughly 12%.

Figure 10 shows an example of the pre-training mechanism in one of the samples from the DeepScores 2 dataset. This
example is particularly tricky because a part of staff below overlaps with the current measure. Moreover, there is a very high
amount of objects of highly differing nature, a considerable amount of which that are almost completely masked away. The
reconstruction the model makes is extremely context-aware, as can be inferred from the insertion of dots in all notes of the
chord in the central part of the image or the reconstruction of the G clef with just two curved segments. There is an image
smoothing effect which comes as a result of using a quadratic loss and having uncertainty in some parts of the image: the key
is almost completely masked away, with no real way of foretelling the position of the remaining alterations aside from using
the relative position of the sharps on the second staff.

Fig. 10. Example of the pre-training procedure. Top-left is the clean input image as given to the model, top-right is the same image after masking randomly
75% of the images’ patches and at the bottom the predicted reconstruction of the model

D. Preliminary Parameter Search

Table V shows all long-running experiments in which we tried to find the best hyperparameter combination for training. In
these experiments we used a pre-trained unfrozen decoder to hasten the training process. As the first row shows, we quickly
identified some very clear signs of overfitting when training the model from scratch, as both the validation loss and symbol
error rate skyrocket when not using any kind of label smoothing or dropout. In short-running experiments (less than 1h) we
also identified convergence issues when using too large learning rates, hence our use of either warmup for the first 1000 batches
or lowering the learning rate for an order of magnitude overall.

We also tested weight decay, but we discarded it early due to the highly polarised nature of its effect; either it was
inconsequential or it caused early layer gradients to vanish, severely crippling the model’s ability to learn.

We first assess the distribution of the error in the best performing model to understand whether having high error rates is
the rule or the exception. Figure 11 (left) shows the histogram for validation images with a given error value. As can be seen,
most examples seem to befall the range below 20% error rates, with a very long tail toward the right for some very particular
cases.

We also study the effect of sequence length on the output error in the best performing experiment to try to identify a
cause for the observed error distribution, with the conclusion that there does not seem to be a strong correlation between both



MASTER THESIS DISSERTATION, MASTER IN COMPUTER VISION, SEPTEMBER 2022 16

TABLE V
SAMPLE OF PRELIMINARY EXPERIMENTS ON INCORPORATING LABEL SMOOTHING AND DROPOUT WITH CONSIDERATION TO LEARNING RATE. COLUMNS

LEFT TO RIGHT, THE AMOUNT OF LABEL SMOOTHING AND DROPOUT, WHETHER THE LEARNING RATE WILL BE AN ORDER OF MAGNITUDE LOWER AT
THE BEGINNING OF TRAINING, THE LEARNING RATE VALUE, THE SYMBOL ERROR RATE IN PERCENTUAL POINTS AND ITS STANDARD DEVIATION FOR

BOTH TRAINING AND VALIDATION SPLITS AND THE LOSS AT EACH SPLIT. USING BRANDENBURG FOR VALIDATION AND THE OTHER DATASETS AS
TRAINING. USING AN UNFROZEN PRE-TRAINED BACKBONE.

Label Smoothing Dropout Warmup Learning Rate Train. SER(%) Valid. SER(%) Loss (Train.) Loss (Valid.)

0 0 False 1.5e− 05 14.24± 6.224 88.98± 7.61 0.2982 60.71
0.25 0 True 3.0e− 04 1560± 1052 500± 359.2 2.586 3.093
0.25 0 True 3.0e− 04 1560± 1053 500.6± 357.3 2.691 3.168
0.25 0.25 True 3.0e− 04 323.8± 423.4 506.6± 356.6 2.159 5.85
0.1 0.1 False 1.5e− 05 0.8037± 1.98 8.228± 11.86 0.1534 3.914
0.2 0.25 False 1.5e− 05 1.605± 2.831 10.73± 10.93 0.2462 3.611

magnitudes. As can be seen in Figure 11 (right), both axes are fairly uniformly distributed, with some specific outliers at the
edge of the error and the only noticeable decrease of performance above 150 length. The Pearson correlation between both
magnitudes stands at 0.327.

Fig. 11. On the left, histogram depicting the number of images within a set SER range in the best-performing preliminary experiment for the validation
partition. On the right, the same experiment results plotted against the length of the ground truth sequence.

We qualitatively investigate the cases where the model seems to be underperforming by manually searching high-error cases
and drawing parallels among them. Figure 12 shows the input 10 images where the model is performing worst – all cases
around 60% of SER. The commonalities between these examples are the presence of a clef or some engraving errors, either
a missing symbol or illogical grouping of elements.

We delve further into the possible causes for the case of clef-containing measures. In Figure 13 we show the first measure
of the validation dataset and the output from the best performing model, in which the error rate is the highest. There are
very notable additions in the output sequence that do not really appear anywhere in the input image. In particular, there are
duplicated notes in the group and a final white notehead that is nowhere to be seen in the initial image. By inspecting the
training datasets we suspect this is because the co-occurrence of white noteheads with clefs on starting measures (38.84% ) is
significantly higher than those without (24.34%). The fact that clefs are overall a “rare” token might be cause inducing this
behaviour. We ensure the effect is not a result of memorisation of a particular sequence by checking the most similar sequence
available in the training datasets, which has a 26.98% of SER w.r.t. the queried output.

In terms of the duplicated notes, we speculate that the presence of text above the measure might be causing issues in the
detection, but cannot provide a conclusive answer. As we do not have any further supporting evidence and we do not have a
dataset with a higher amount of clefs available, we cannot further investigate the issue, but given that the effect is consistent
in all experiments we believe it is a very likely cause.

A recurring observation is the fact that the validation loss is consistently an order of magnitude above the training loss. This
leads to the intuition that the model is much less confident in its predictions on validation than it is on training, which can be
an indication of either overfitting or a rift in the distribution on training w.r.t. validation. With the observations made thus far
we can be quite confident that overfitting seems not to be the issue.

We also ensured the training samples are sufficiently distinct from the validation samples by computing the SER between each
training and validation sample. The results are summarised in Figure 14. The only 32 identical samples are full-rest measures,
which are statistically relevant to the task at hand and therefore expected. Otherwise we deem the sequences sufficiently distinct.



MASTER THESIS DISSERTATION, MASTER IN COMPUTER VISION, SEPTEMBER 2022 17

Fig. 12. Validation images on which the model is performing worst.

Ground Truth
REGULAR barline SHARP key TIMESIG CUT time signature G CLEF clef STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 4 pitch note
vgroup STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 3 pitch note vgroup hgroup REGULAR barline voice measure

Prediction (132.258 SER(%))

REGULAR barline TIMESIG C time signature (TIMESIG CUT) (time signature) G CLEF clef STEM UP stem BLACK NOTEHEAD NUMBER 4 pitch
START TIE ties note vgroup hgroup STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 4 pitch END TIE ties note vgroup STEM UP BEAM
BEAM stem BLACK NOTEHEAD NUMBER 4 pitch note vgroup STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 3 pitch note vgroup
STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 3 pitch note vgroup hgroup STEM UP stem WHITE NOTEHEAD NUMBER 3 pitch
note vgroup hgroup REGULAR barline voice measure

Fig. 13. Output of the model for the first measure of the validation dataset in the best performing preliminary experiment. In blue, tokens that should be
substituted; in red, tokens that should be removed; in orange and between parentheses, tokens that are missing and should be included. Below on the left, the
ground truth image and on the right a replica of the produced output.

E. Length, Pre-training and Weighting

In Table VI we summarise the entire set of experiments in which we ablate with various training parameters in order to try
to improve results and identify possible issues. All models are trained fixing a set of hyperparameters as seen in Table VII.
Note that for these experiments we used a bigger learning rate, as in tentative runs we found it much easier to find convergence
on smaller sequences and higher learning rates than with full-length sequences.

The main takeaways from Table VI can be summarised in the following points:
• When using an unfrozen untrained backbone, the model tends to overfit heavily. This is indicated by the substantial

difference in training and validation SER.
• When using a pre-trained backbone, freezing it during training makes the output seemingly more stable (less uncertainty

in the output error; overall better results).
• Adding a weighting term in the loss does not work well the way proposed in this work. Since we did not modify the

support tokens’ weights (start and end of sequence), the model produces trivial solutions in which the output is the empty
sequence. We have also observed the presence of many rare tokens in no particular structure, which are favored by the
loss.

• Models trained on longer sequences seem to be ill-behaved – surges in the uncertainty. From what we learnt in preliminary
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Fig. 14. Histogram with the counts of samples of the validation dataset within a minimum set SER from any other sample of the training dataset.

TABLE VI
DETAILED RESULTS FOR MOST RELEVANT EXPERIMENTS CHANGING OUTPUT LENGTH FOR THE MODEL. FROM LEFT TO RIGHT, COLUMNS INDICATE 1)

WHETHER A PRE-TRAINED BACKBONE IS BEING USED, 2) WHETHER THIS BACKBONE IS FROZEN DURING TRAINING, 3) WHETHER A WEIGHTING FACTOR
IS USED ON THE LOSS FUNCTION, 4) THE INPUT SEQUENCE LENGTHS, 5) THE SYMBOL ERROR RATE OF THE LAST TRAINING EPOCH (IN PERCENTAGE
POINTS, WITH THE STANDARD DEVIATION PRECEDED BY ± ALSO IN ABSOLUTE PERCENTAGE POINTS), 6) THE VALIDATION SYMBOL ERROR RATE OF

THE LAST VALIDATION EPOCH, 7) THE LOSS OF THE LAST TRAINING EPOCH AND 8) THE LOSS OF THE LAST VALIDATION EPOCH. USING 0.1 FOR BOTH
DROPOUT AND LABEL SMOOTHING.

Pre-Trained Frozen Weighted Length Train. SER (%) Valid. SER (%) Loss (Train) Loss (Valid)

64 3.563± 4.569 22.48± 22.42 0.530 4.460
128 5.023± 5.184 31.61± 18.47 0.432 6.179
256 5.846± 5.502 33.19± 18.97 0.320 6.915

64 1.886± 9.320 5.382± 11.40 0.494 2.156

128 2.691± 13.59 11.53± 9.539 0.343 3.524

256 16.37± 89.41 31.11± 50.75 0.435 4.685

64 1.578± 3.198 6.326± 1.261 0.458 2.000

128 1.783± 3.376 4.828± 9.245 0.346 2.274

256 3.431± 32.54 8.843± 10.93 0.247 3.263

64 99.42± 4.294 179.6± 66.66 0.429 6.063

128 100.2± 6.113 145.9± 60.58 0.526 4.324

256 100.8± 15.79 100.0± 0.101 0.396 0.988

runs with full-length sequences, we attribute this to the increase in Learning Rate in comparison to earlier experiments,
as we found similar phenomena in incomplete runs.

We shall now address the last observed effect. By inspecting the training sequences with error above µ+σ we have isolated
a set of examples that are explanatory of the issue. Figure 15 shows one of these examples, in which the first half of the
sequence is properly produced, but then a series of random tokens are generated until the full-length output is obtained. The
explanation is the model has missed the prediction of the end token, after which the model receives padding tokens as input.
Nevertheless, these tokens are ignored in the training loss, therefore causing the model to be unable to generate a sensible
output.

We checked the results for the Pre-Trained + Frozen + Unweighted experiments using only the length 64 validation samples.
The resulting symbol error rates for models trained on lengths 64, 128 and 256 were 6.326 ± 12.60, 4.754 ± 11.93 and
4.774 ± 12.27. What this indicates is that the model overall seems to benefit from the extra samples from the 128-length
dataset, but stagnates when incorporating up to 256. Considering the added training ease and the distribution of samples of
our datasets in a real scenario it would be best to work with 128-length samples.

We also checked the first validation measure as in Figure 13, with a similar result over 80% SER in most cases.
Finally, we checked what the most edited tokens were in experiments with Pre-Trained + Frozen + Unweighted hyperpa-

rameters, and concluded that the edit distribution is not very informative as it closely correlates with the validation dataset’s
distribution (see Table IX). Figure 16 shows a plot with the 25 most frequent edits in the aforementioned scenario. Worthy
of comment is the fact that it is not guaranteed that the token edits represent the most sensible way of producing the ground
truth sequence, as there may be more than one optimal edit path. Therefore some edits might not reflect the tokens that are
actually incorrectly produced (e.g. there might be cases where insertions and removals are commutative).
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TABLE VII
HYPERPARAMETERS IN USE DURING THE ABLATION EXPERIMENT.

Encoder
Layers 6 Heads 8 Input Size 512× 128 Patch Size 16 Dimension 768

Decoder
Layers 6 Heads 8 Dimension 768 Emb. Dropout 0.0 Dropout 0.1

Overall
Learn. Rate 3.0 · 10−4 L. Smoothing 0.1 Weight Decay 0.0 Eval. every 3 Epochs Data Aug. Yes

Ground Truth
REGULAR barline STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 2 pitch END TIE ties note vgroup STEM UP BEAM BEAM
stem BLACK NOTEHEAD NUMBER 3 pitch note vgroup STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 4 pitch note vgroup
hgroup STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 5 pitch note vgroup STEM UP BEAM BEAM stem BLACK NOTEHEAD
NUMBER 6 pitch note vgroup STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 5 pitch note vgroup hgroup STEM UP BEAM BEAM stem
BLACK NOTEHEAD NUMBER 4 pitch note vgroup STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 5 pitch note vgroup STEM UP
BEAM BEAM stem BLACK NOTEHEAD NUMBER 4 pitch note vgroup hgroup REGULAR barline voice measure

Prediction (188.0 SER(%))

REGULAR barline STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 5 pitch note ties note vgroup STEM UP BEAM BEAM stem
BLACK NOTEHEAD NUMBER 3 pitch note vgroup STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 4 pitch note vgroup STEM UP
(STEM UP) STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 3 pitch note vgroup STEM UP BEAM BEAM stem BLACK NOTEHEAD
NUMBER 4 pitch note vgroup STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 6 pitch note vgroup hgroup STEM UP BEAM BEAM stem
BLACK NOTEHEAD NUMBER 6 pitch note vgroup STEM UP BEAM BEAM stem BLACK NOTEHEAD NUMBER 5 pitch note vgroup STEM UP
BEAM BEAM stem BLACK NOTEHEAD NUMBER 4 pitch note vgroup hgroup REGULAR barline voice measure rest rest hgroup vgroup hgroup hgroup
vgroup hgroup hgroup hgroup vgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup vgroup
hgroup measure hgroup hgroup hgroup hgroup measure hgroup hgroup hgroup hgroup hgroup vgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup
hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup vgroup hgroup hgroup vgroup hgroup hgroup hgroup hgroup vgroup
hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup BEAM hgroup hgroup hgroup
hgroup hgroup hgroup hgroup vgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup
hgroup hgroup hgroup vgroup hgroup hgroup vgroup hgroup hgroup vgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup
hgroup hgroup hgroup hgroup hgroup vgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup
hgroup hgroup vgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup hgroup vgroup

Fig. 15. Example of malformed output during training in high error training cases

F. Cross-Validation Experiment

TABLE VIII
CROSS-VALIDATION EXPERIMENT RESULTS. THE FIRST COLUMN PRESENTS THE DATASET USED FOR VALIDATION; SUCCESSIVE COLUMNS SHOW THE

SYMBOL ERROR RATE FOR TRAINING AND VALIDATION WITH THEIR STANDARD DEVIATION AND THE LOSS IN TRAINING AND VALIDATION.

Valid. Dataset Train. SER (%) Valid. SER(%) Loss (Train) Loss (Valid)

Jupiter 2.123± 3.766 5.215± 9.336 0.407 1.891
Fugue 1.731± 3.108 3.967± 7.783 0.338 3.417
Brandenburg 1.894± 3.495 6.045± 10.96 0.369 2.366

Table VIII shows the results of the Cross-Validation experiment employing 128-length datasets. All models are performing
similarly, with differences caused by the uneven natures of each dataset. This confirms the results obtained so far are sensible
and uncorrelated with the input data used.
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Fig. 16. Most frequent token edits in validation for the Pre-Trained + Frozen + Unweighted set of experiments (all lengths)

VII. CONCLUSIONS

“It is only afterward that a new idea seems reasonable. To begin with, it usually seems unreasonable.”
Isaac Asimov

In this work we have proposed a new tree-like scheme notation format for Optical Music Recognition with the purpose of
tackling OMR end-to-end without requiring any intermediate representations and making possible the production of engraving-
ready scores. We have developed a series of new datasets that employ this format and tested its performance on Sequence to
Sequence and Transformer-based models, on which we also tested some pre-training techniques. Overall, we can summarise
our findings in the following points:

• We have proposed a new notation format aimed at end-to-end music recognition, but usable in any other context.
The MTN format is expressive and provides a way of producing engraving-ready scores, as well as being suitable for many

OMR setups, not only end-to-end applications. Moreover, it can provide a lingua franca for OMR researchers and practitioners
through which common evaluation frameworks can be developed. The fact that it is treatable as both a graph and a sequence
allows for a wider array of possible analysis and evaluation mechanisms to be developed. We have used SER, which is a
standard metric when working with sequences, but graph edit distances or variations of them are also usable.

There are still some issues that may be addressed in the future, such as adding support for multiple-staff parts and polishing
elements such as the alignment of additional voicings. The specification does work well for any kind of single-staff homophonic
score, with limited support for full polyphony.

• We have built a 60k sample typeset OMR dataset.
We have developed a dataset to do a proof-of-concept of the notation system on OMR systems and written tools to work

with with new sources of data. We used OpenScores transcriptions due to their status as public domain works, quality and
historical relevance.

• The proposed notation format works well for recognition.
From the recognition experiments we have conducted we can conclude MTN can be employed successfully in end-to-end

models. Excluding the unsuccessful Seq2Seq experiments, we have seen models being able to fully grasp the syntax of the
notation and obtain quality results from them.

• The proposed Transformer-based model is very promising.
The Transformer model offers a great many deal of advantages when compared against RNN Seq2Seq models. These by-

design advantages come with some downsides, such as their higher data requirements and their ease for overfitting. We did
have to very carefully tune hyperparameters and impose some sequence length restrictions in order to make them converge
consistently, but successive data analysis proved models to be performant on most real use-case scenarios with down to 4.828%
SER in 128-length sequences.

Some other trials we have considered but we left as future work are iterations on the models’ structure. One of the issues
we have found is that having too long input sequences makes training the models very unstable, aside from a dramatically
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increased cost of inference during validation. A possible solution would be to use models designed for long sequences such
as sparse Transformers [65] or BigBird [63].

• Pre-training improves results substantially.
When incorporating a pre-trained set of weights in the encoder, the model always produced better results in validation than

otherwise. The model seems better fit for generalisation when training with such an encoder with frozen weights than training
from scratch using only the annotated data and the cross-entropy loss. This is also the first time this has been tried for music
to the best of our knowledge.

This opens the door for a very interesting road of research towards self-supervision in music recognition, in which an
overwhelming abundance of non-labeled data is available. In particular, self-supervision is an ideal road to tackle problems
such as handwritten music recognition, for which a great corpus of unlabeled data is available.

• There is a very extensive library of scores that can be used.
We have developed tools to generate MTN files from MusicXML files. Given the ubiquity of the format, through this

approach we believe we can palliate some of the input data problems the OMR community has had for many years, provided
the MusicXML file can be aligned to the source material.

At the same time, we also found some ground to cover as future work.
• The matter of testing the approach on real handwritten scores remains.
We did not have time to delve into this matter with the attention the problem deserves. Tackling automatic cropping and

alignment of handwritten scores to any notation system is probably worth an entire thesis of work, hence our hesitancy to
attempt it on the first place. Nevertheless, it is a very logical step forward in which limited size attempts can be made; for
instance, manually annotating a single piece and using a mixture of synthetic and real data for training (as seen in [10] or
[41]).

In particular, given that the notation format is independent of the representation of the score, another possible way to tackle
handwritten scores is style transfer. By generating samples from synthetic scores with a handwritten look, the problem of
having annotated training data is solved.

All in all, we consider our initial goals accomplished. The obtained results are very promising, while still a little bit behind
the current state of the art for typeset scores. Notably, the current established methods are very mature, whereas this work is
exploratory in nature, setting ground work for further developments going forward in time.
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APPENDIX A
DATASET FREQUENCIES

TABLE IX
DETAILED DATASET ABSOLUTE (f ) AND RELATIVE (p) FREQUENCY OF APPEARANCE OF TOKENS.

Brandenburg Fugue Jupiter 9th
f p f p f p f p

BEAM 26947 0.130435 24863 0.074081 20587 0.050684 63339 0.041111
vgroup 21558 0.104350 32627 0.097214 39009 0.096038 143180 0.092932
pitch 19814 0.095908 30540 0.090996 32803 0.080760 114177 0.074108
stem 19814 0.095908 30135 0.089789 31159 0.076712 110174 0.071510
note 19814 0.095908 30540 0.090996 32803 0.080760 114177 0.074108
BLACK NOTEHEAD 19782 0.095753 27536 0.082045 27537 0.067795 102646 0.066623
STEM DOWN 12083 0.058487 23312 0.069460 20992 0.051681 75470 0.048985
hgroup 9323 0.045127 19081 0.056853 28421 0.069971 114311 0.074195
STEM UP 7731 0.037421 6823 0.020330 10167 0.025031 34704 0.022525
NUMBER 1 7047 0.034111 13103 0.039041 15659 0.038552 52687 0.034197
barline 4028 0.019497 13064 0.038925 20550 0.050593 88006 0.057121
REGULAR 3984 0.019284 12932 0.038532 20312 0.050007 85306 0.055369
FLAG 2734 0.013234 835 0.002488 1936 0.004766 12402 0.008050
NUMBER 3 2048 0.009913 2413 0.007190 3180 0.007829 12744 0.008272
NUMBER 8 2037 0.009860 3699 0.011021 2934 0.007223 11722 0.007608
voice 2014 0.009749 6598 0.019659 10316 0.025398 44221 0.028702
measure 2014 0.009749 6532 0.019462 10275 0.025297 44003 0.028561
NUMBER 2 2007 0.009715 2573 0.007666 3961 0.009752 11713 0.007602
NUMBER 0 1989 0.009628 3753 0.011182 3515 0.008654 13380 0.008684
NUMBER 7 1925 0.009318 3440 0.010250 3065 0.007546 11063 0.007181
NUMBER 6 1875 0.009076 3114 0.009278 2010 0.004949 9996 0.006488
NUMBER 4 1808 0.008752 2230 0.006644 4412 0.010862 12736 0.008266
NUMBER 5 1780 0.008616 2318 0.006907 2686 0.006613 9819 0.006373
rest 1744 0.008442 2089 0.006224 6764 0.016653 31668 0.020554
NUMBER 9 1699 0.008224 3855 0.011486 3194 0.007863 9970 0.006471
MINUS 1564 0.007570 141 0.000420 968 0.002383 4472 0.002903
accidental 1382 0.006689 4318 0.012866 4104 0.010104 8662 0.005622
slur 1126 0.005450 166 0.000495 5563 0.013696 17013 0.011042
EIGHTH REST 1096 0.005305 404 0.001204 1421 0.003498 9362 0.006076
SHARP 965 0.004671 2066 0.006156 1338 0.003294 5066 0.003288
START SLUR 599 0.002899 84 0.000250 2784 0.006854 8799 0.005711
END SLUR 599 0.002899 84 0.000250 2784 0.006854 8799 0.005711
QUARTER REST 540 0.002614 942 0.002807 3330 0.008198 11206 0.007273
NATURAL 301 0.001457 1498 0.004463 1933 0.004759 2959 0.001921
FLAT 138 0.000668 850 0.002533 854 0.002103 3573 0.002319
DOT 130 0.000629 1860 0.005542 1876 0.004619 13699 0.008891
dots 130 0.000629 1860 0.005542 1863 0.004587 13263 0.008608
HALF REST 87 0.000421 336 0.001001 1494 0.003678 1516 0.000984
articulations 40 0.000194 80 0.000238 3294 0.008110 20343 0.013204
time signature 33 0.000160 96 0.000286 68 0.000167 1450 0.000941
WHITE NOTEHEAD 32 0.000155 3004 0.008951 5266 0.012965 11531 0.007484
LIGHT-HEAVY 22 0.000106 100 0.000298 170 0.000419 400 0.000260
key 22 0.000106 96 0.000286 21 0.000052 1407 0.000913
FERMATA 22 0.000106 62 0.000185 30 0.000074 140 0.000091
STACCATISSIMO 18 0.000087 0 0.000000 471 0.001160 0 0.000000
clef 12 0.000058 156 0.000465 27 0.000066 59 0.000038
ties 12 0.000058 4218 0.012568 1619 0.003986 11924 0.007739
16TH REST 12 0.000058 105 0.000313 109 0.000268 1519 0.000986
LIGHT-LIGHT 11 0.000053 16 0.000048 0 0.000000 2050 0.001331
TIMESIG C 11 0.000053 38 0.000113 17 0.000042 350 0.000227
TIMESIG CUT 11 0.000053 48 0.000143 17 0.000042 300 0.000195
OVER 11 0.000053 10 0.000030 34 0.000084 800 0.000519
compound time signature 11 0.000053 10 0.000030 34 0.000084 800 0.000519
HEAVY-LIGHT 11 0.000053 16 0.000048 68 0.000167 250 0.000162
WHOLE REST 9 0.000044 283 0.000843 389 0.000958 8001 0.005193
START TIE 6 0.000029 2158 0.006430 880 0.002167 6864 0.004455
END TIE 6 0.000029 2157 0.006427 880 0.002167 6864 0.004455
F CLEF 6 0.000029 33 0.000098 10 0.000025 14 0.000009
ornaments 6 0.000029 80 0.000238 693 0.001706 1653 0.001073
TRILL-MARK 6 0.000029 35 0.000104 104 0.000256 154 0.000100
C CLEF 3 3 0.000015 45 0.000134 1 0.000002 6 0.000004
G CLEF 3 0.000015 7 0.000021 14 0.000034 38 0.000025
CAESURA 1 0.000005 0 0.000000 0 0.000000 0 0.000000
C CLEF 1 0 0.000000 47 0.000140 0 0.000000 0 0.000000
C CLEF 4 0 0.000000 24 0.000072 2 0.000005 1 0.000001
MORDENT 0 0.000000 22 0.000066 0 0.000000 0 0.000000
INVERTED-MORDENT 0 0.000000 22 0.000066 0 0.000000 0 0.000000
32ND REST 0 0.000000 19 0.000057 21 0.000052 64 0.000042
STACCATO 0 0.000000 18 0.000054 2793 0.006876 20154 0.013081
TURN 0 0.000000 1 0.000003 2 0.000005 0 0.000000
TREMOLO 0 0.000000 0 0.000000 586 0.001443 1497 0.000972
WAVY-LINE 0 0.000000 0 0.000000 2 0.000005 4 0.000003
ACCENT 0 0.000000 0 0.000000 0 0.000000 49 0.000032
FLAT-FLAT 0 0.000000 0 0.000000 0 0.000000 1 0.000001
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